
### 10/27/21 (in class)

Electronic Signatures: Ella Barnes, Heather Mello, Fahim Hossain, John Kang

- Evaluated which other factors to consider—decided to not add any other factors as they all were believed to be insignificant
- Established basic code framework and order of operations for coding
- Ran through basic traits of each site
  - Different requirements and restrictions (height limits potential energy storage, access road costs, potential additional costs, etc.)
- Made a decision matrix summarizing all additional costs:

| Sites               |                         |        |         |         |         |  |
|---------------------|-------------------------|--------|---------|---------|---------|--|
| Customer Needs      | Technical Needs         | Weight | Zone 1  | Zone 2  | Zone 3  |  |
| Water capacity      | Surface Area (m^2)      | 2      | 360,000 | 25,620  | 39,760  |  |
| Energy storage      | Height (m)              | 2      | 30      | 100     | 65      |  |
| Pipe cost           | Distance from River (m) | 1      | 60      | 130     | 91.2    |  |
| Road Cost           | Access Road Cost (\$)   | 1      | 40,000  | 100,000 | 150,000 |  |
| Cost (misc)         | Additional Costs (\$)   | 1      | 10,000  | 8,000   | 63,600  |  |
| Terrain Preparation | Prep Cost (\$)          | 0.5    | 90,000  | 12,810  | 2,386   |  |
| Sum of Scores       |                         |        | 4.715   | 3.779   | 2.306   |  |

• Zone 1 was selected:



### 10/29/21 (in class)

Electronic Signatures: Ella Barnes, Heather Mello, Fahim Hossain, JohnKang

- Made a framework for the poster
- Started defining functions for finding the relevant program input values

### 10/30/21 (7:00-9:00)

Electronic Signatures: Heather Mello, Ella Barnes, Fahim Hossain, John Kang

- Wrote down the necessary equations and translated them into code
- Finished defining program input functions
- Reformatted parts data into readable text files
  - Created read sequence for all relevant files
- Made a nested for loop that iterates through all the possible data values to maximize efficiency given fixed values
- Determined that effects on efficiency due to people, animals, or objects falling into the reservoir will not be taken into account
- Updated Poster: project management section
- Drafted notes for the discussion section of the written report

Boiled Soun Equations

$$V_{Down} = \frac{Q_{Turbire}}{A_{Ten}_{pipe}} \qquad V_{Up} = \frac{Q_{pump}}{A_{Ten}_{pipe}}$$

$$M_{(mass)} = \left( E_{out} + E_{in} \left( \frac{1}{n_{hbind}} - 1 \right) \right)$$

$$g(H + d/2) - \left( f(L/D) \left( V_{dumn}^2 / 2 \right) \right) - \frac{effective}{elevation}$$

$$\left( \frac{E_1 V_{down}^2 / 2}{2 + C_{out}^2 / 2} \right) + m\left( \frac{E_1 V_{up/2}^2 + m\left$$

### 11/01/21 (in class)

Electronic Signatures: Heather Mello, Ella Barnes, Fahim Hossain, john Kang

- Updated poster: translated finished sections from big chunks of text to bullet points
- Redid grizzly bear calculation with correct values for reservoir surface area and depth

How many bears would have to fall into the reservoir for there to be a 1% change in Volume of the water?

OV= (surface area)(height)
= (1010130 m²)(12.5m) = 1.332,875 m³

(2) 1% of this volume: 
$$13,328.75$$
 m³

(3) Volume of a grizzly bear:
$$= 4\pi (.254 \text{ m})^2 (.7102 \text{ m}) = .018 \text{ m}^3$$

$$= 9.99 \text{ m}^3$$

$$= 9.99 \text{ m}^3$$

$$= 9.99 \text{ m}^3$$

$$= 9.99 \text{ m}^3$$

$$= 13328.75 \text{ m}^3$$

$$= 1387 \text{ bears}$$

- Chose new values for reservoir wall height (12.5 m), the volumetric flow rate for the turbine (31  $\text{m}^3/\text{s}$ )
- Incorporated cost with iteration in program
  - Used cost lists that are parallel with efficiency (or diameter)

# 11/1/21 9:00-10:30pm

Electronic Signatures: Ella Barnes, Heather Mello, John Kang, Fahim Hossain

- Worked on poster and outline of written report
- Put results into charts and graphs and put on poster
- Add discussion section to poster

# Code outputs

---Winning efficiency = 0.8054965287424701 Pump efficiency = 0.92 ---Pump Flow volume = 65

Pipe diameter = 3.0

--Pipe length = 67.08203932499369

Pipe friction = 0.002

--Depth = 12.5

--pipe reservoir elevation = 30

--K1 = 0.15

---K2 = 0.15

Turbine Efficiency = 0.92

--Turbine Flow volume = 31

Mass = 1304507128.8817587

Area of Reservoir = 106629.27836076984

Ein = 148.97643343956096

Efficiency = 0.8054965287424701

Fill Time = 5.696008459442833

Empty Time = 11.94324354399304

--Total cost = 11214.558441597172

| Pump Efficiency    | 0.92                  |
|--------------------|-----------------------|
| Pipe Diameter      | 3.0 m                 |
| Pipe Friction      | 0.002                 |
| Turbine Efficiency | 0.92                  |
| Mass               | 1,300,000,000 kg      |
| Area of Reservoir  | 106630 m <sup>2</sup> |
| E <sub>in</sub>    | 149.0 MWh             |
| Efficiency         | .8055                 |

| Fill Time  | 5.70 hours  |
|------------|-------------|
| Empty Time | 11.94 hours |



|        | Description                                                                                                     | Unit Cost | Quantity | Total Cost<br>(\$) |
|--------|-----------------------------------------------------------------------------------------------------------------|-----------|----------|--------------------|
| Pump   | The total cost of the pump usage (the selected cost efficiency times the pump flow rate).                       | \$456     | 65       | 29640              |
| Pipe   | The combined price of both pipes; up & down (the selected cost per meter times the total length of both pipes). | \$1,011   | 134.16   | 135635.76          |
| Bend 1 | The upper bend on the pipe                                                                                      | \$892     | 1        | 892                |

|                      | going down (the selected bend unit cost).                                                                                     |           |        |         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|--------|---------|
| Bend 2               | The upper bend on the pipe going up (the selected bend unit cost).                                                            | \$892     | 1      | 892     |
| Bend 3               | The lower bend on the pipe going down (the selected bend unit cost).                                                          | \$892     | 1      | 892     |
| Bend 4               | The lower bend on the pipe going up (the selected bend unit cost).                                                            | \$892     | 1      | 892     |
| Turbine              | The total cost of the turbine usage (the selected cost efficiency times the turbine flow rate).                               | \$684     | 31     | 21204   |
| Pumphouse            | The fixed price of the pump and turbine housing.                                                                              | \$100,000 | 1      | 100000  |
| Road                 | The fixed price of Zone 1 access road.                                                                                        | \$40,000  | 1      | 40000   |
| Site Prep            | The total cost of soil removal for the area (Zone 1 prep cost per meter times the area of the reservoir).                     | \$0.25    | 106630 | 26657.5 |
| Perimeter<br>Wall    | The total cost of walling around the reservoir (the selected cost per meter of walling times the perimeter of the reservoir). | \$135     | 326.54 | 44082.9 |
| Pipe Install<br>Cost | The total cost of the base installation of the pipes (cost                                                                    | \$500     | 67.082 | 33541   |

|                             | per meter times the length of pipe).                                                                              |          |     |             |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------|----------|-----|-------------|
| Raised Pipe<br>Cost         | The total additional cost of raising the pipes (cost per square meter times the area under the pipes for Zone 1). | \$250    | 900 | 225000      |
| Other<br>Costs              | The fixed price of soil testing costs for Zone 1.                                                                 | \$10,000 | 1   | 10000       |
| Overall Estimated Cost (\$) |                                                                                                                   |          |     | \$669331.18 |

### 11/2/21 4:30-5:30

Electronic Signatures: Ella Barnes, Heather Mello, John Kang

- Finalized poster and practiced presenting (assigned sections, refined off-slide information)
- Added a drawing of final reservoir design
- Amended final cost to correct for a previous error (neglected to add the cost associated with having two pipes, one for pumping water up to the reservoir and a separate one for water flowing down)
- Added descriptions to price table
- Amended images on poster (replaced equations image, added drawing of full model to model image)

$$\begin{split} & \bigvee_{dDWN} = \frac{\mathcal{Q} \text{ turbine}}{A \text{ reapipe}} \qquad \bigvee_{up} = \frac{\mathcal{Q} \text{ pump}}{A \text{ reapump}} \\ & \qquad \qquad \left( \mathbb{E}_{\text{out}} + \mathbb{E}_{\text{in}} \left( \frac{1}{N \text{ turbine}} \right) - 1 \right) \\ & \qquad \qquad M = \frac{\left( \mathbb{E}_{\text{out}} + \mathbb{E}_{\text{in}} \left( \frac{1}{N \text{ turbine}} \right) - 1 \right)}{g \left( \mathbb{H} + d |_{Z} \right) - f \left( \mathbb{H} D \right) \left( V_{\text{down}}^{2} /_{Z} \right) - \mathcal{E}_{1} V_{\text{down}}^{2} /_{Z} - \mathcal{E}_{2} V_{\text{down}}^{2} /_{Z}} \end{split}$$
 
$$\mathcal{E}_{\text{in}} = m \left( f \left( \mathbb{H} D \right) V_{up}^{2} /_{Z} \right) + m \left( \mathcal{E}_{1} V_{up}^{2} /_{Z} \right) + m \left( \mathcal{E}_{2} V_{up}^{2} /_{Z} \right) + \mathcal{E}_{\text{out}} \end{split}$$

$$Ein = M(f(2|D)V_{up}^{2}/2) + M(\varepsilon_{1}V_{up}^{2}/2) + M(\varepsilon_{2}V_{up}^{2}/2) + Eout$$

$$+ E_{out} \left( \left( \frac{1}{\eta_{turbine}} \right) - 1 \right) + M(f(2|D)V_{up}^{2}/2 + M(\varepsilon_{1}V_{down}^{2}/2)$$

$$+ M(\varepsilon_{2}V_{down}^{2}/2)$$

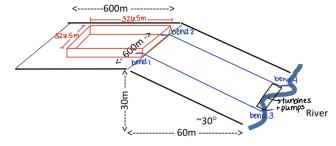
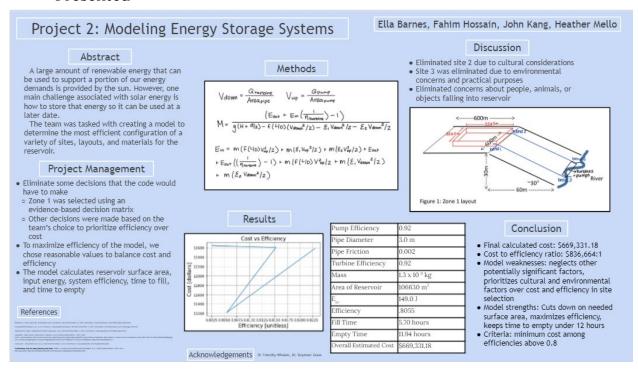




Figure 1: Zone 1 layout

### 11/3/21 (presentation day-in class)

Electronic Signatures: Ella Barnes, John Kang, Fahim Hossain, Heather Mello

Presented



Our presentation went really well, and the only critique that we got from Dr.
 Whalen was that we were a little bit quiet.

# 11/4/21 3:00-4:00pm

Electronic Signatures: Ella Barnes, Heather Mello, John Kang

- Worked on writing report: divided the work & decided who will be the main writer for each section
  - o Ella: Cover letter, executive summary
  - Heather: Discussion, conclusion/recommendations
  - All: Cost impact analysis

# 11/5/21 3:40-

Electronic Signatures: Heather Mello, Ella Barnes, John Kang

• Finalized written report