Project 2: Modeling Energy Storage Systems

Abstract

A large amount of renewable energy that can be used to support a portion of our energy demands is provided by the sun. However, one main challenge associated with solar energy is how to store that energy so it can be used at a later date.

The team was tasked with creating a model to determine the most efficient configuration of a variety of sites, layouts, and materials for the reservoir.

Project Management

- Eliminate some decisions that the code wou have to make
- Zone 1 was selected using an evidence-based decision matrix
- Other decisions were made based on the team's choice to prioritize efficiency over cost
- To maximize efficiency of the model, we chose reasonable values to balance cost and efficiency
- The model calculates reservoir surface area, input energy, system efficiency, time to fill, and time to empty

References

Bradford, A. (2016, April 18). Grizzly Bear Facts. LiveScience. Retrieved October 31, 2021, from https://www.livescience.com/54453-grizzly-bear.html

Encyclopædia Britannica, inc. (n.d.). Reservoir. Encyclopædia Britannica. Retrieved November 1, 2021, from https://www.britannica.com/technology/reservoir

Hydroelectric Power. Hydroelectric Power Generation. (n.d.). Retrieved November 2, 2021, from https://www.mpoweruk.com/hydro_power.htm.

Landslides, Slope Failure, and Erosion. Exponent. (n.d.). Retrieved November 2, 2021, from

Pump wear - labourtaber.com. (n.d.). Retrieved November 2, 2021, from https://www.labourtaber.com/Pump%20Wear.pdf.

PHMC federal laws and acts protecting burial sites. PHMC > Cemetery Preservation and Recordation. (n.d.). Retrieved November 2, 2021, from http://www.phmc.state.pa.us/portal/communities/cemetery-preservation/laws/federal-laws.html.

Methods

Acknowledgements Dr Timothy Whalen, Dr. Seymour Glass

Ella Barnes, Fahim Hossain, John Kang, Heather Mello

- concerns and practical purposes
- objects falling into reservoir

Pump Efficiency	0.92
Pipe Diameter	3.0 m
Pipe Friction	0.002
Turbine Efficiency	0.92
Mass	1.3 x 10 ⁹ kg
Area of Reservoir	106630 m ²
E _{in}	149.0 J
Efficiency	.8055
Fill Time	5.70 hours
Empty Time	11.94 hours
Overall Estimated Cost	\$669,331.18

Discussion

• Eliminated site 2 due to cultural considerations • Site 3 was eliminated due to environmental • Eliminated concerns about people, animals, or

Conclusion

- Final calculated cost: \$669,331.18
- Cost to efficiency ratio: \$836,664:1
- Model weaknesses: neglects other potentially significant factors, prioritizes cultural and environmental factors over cost and efficiency in site selection
- Model strengths: Cuts down on needed surface area, maximizes efficiency, keeps time to empty under 12 hours
- Criteria: minimum cost among efficiencies above 0.8

https://www.exponent.com/services/practices/engineering/civil-engineering/capabilities/geotechnical/landslides-slope-failures--erosion/?serviceId=8a0e4c07-38ac-40f9-9430-7973ed926ebd&loadAllByPage Size=true&knowledgePageSize=7&knowledgePageNum=0&newseventPageSize=7&newseventPageNum=0&professionalsPageNum=7